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C L I M A T O L O G Y

Atmospheric dynamics drive most interannual U.S. 
droughts over the last millennium
M. P. Erb1,2*, J. Emile-Geay1, G. J. Hakim3, N. Steiger4, E. J. Steig3,5

The American West exemplifies drought-sensitive regions with growing populations. Paleoclimate investigations 
have documented severe droughts in this region before European settling, with major implications for water 
management and planning. Here, we leverage paleoclimate data assimilation to reconstruct past climate states, 
enabling a large-scale multivariate investigation of U.S. drought dynamics over the last millennium. These results 
confirm that La Niña conditions significantly influence southwest U.S. drought over the past millennium but only 
account for, by one metric, ~13% of interannual drought variability in that region. Atlantic sea surface tem-
peratures may also contribute a small influence, but unexplained variability suggests a substantial role for inter-
nal atmospheric variability. This conclusion is buttressed by analysis of simulations from the Community Earth 
System Model Last Millennium Ensemble. While greenhouse gases will increase future drought risk, as shown 
in other work, interannual U.S. drought variations will also be widely influenced by processes internal to the 
atmosphere.

INTRODUCTION
Recent droughts across the United States have resulted in loss of life 
and billions of dollars in damage (1–3), making drought forecasting 
and planning a high societal priority. Yet, the paleoclimate record 
shows that these droughts pale in comparison to the megadroughts 
of the Common Era (C.E.), many of which appear to be longer last-
ing than the famed “Dust Bowl” of the 1930s (4, 5) and had similarly 
marked societal impacts. For instance, the drought of 1276 to 1299 
C.E. likely contributed to the migration of the Anasazi people out of 
the American southwest near the beginning of the 14th century (5, 6). 
Because continued greenhouse gas emissions are projected to increase 
drought risk over much of the United States and other regions (7–9), 
understanding the dynamical causes of past droughts is of paramount 
importance.

U.S. droughts have been associated with changes in the El Niño/
Southern Oscillation (ENSO) (4, 10–12), sea surface temperatures 
(SSTs) in the Atlantic Ocean (10, 11, 13, 14), internal atmospheric 
dynamics (15–17), and greenhouse forcing (2). Variations in the At-
lantic Multidecadal Oscillation (AMO) have also been suggested as 
an influence on past “megadroughts” (15), especially in conjunction 
with La Niña–like SSTs (18–20). Much of this past work relies either 
on the instrumental record, which is relatively short (21), or on pa-
leoclimate data processed in different ways (10, 15, 22). Here, we use 
a data assimilation approach called the Last Millennium Reanalysis 
(LMR) (23, 24) to combine paleoclimate proxy data with climate model 
output within a unified framework to explore the climate drivers of 
U.S. drought.

The LMR methodology (Materials and Methods) combines a 
network of annually resolved proxy records—including tree rings, 
corals, and ice cores (Fig. 1)—with output from a general circula-
tion model (GCM), to estimate a gridded multivariate record of climate 

variability over the past two millennia (23, 24), similar to the Paleo 
Hydrodynamics Data Assimilation product (PHYDA) reconstruction 
(25). All temporal variations in the reanalysis are informed by the 
proxy records weighted against a time-independent climate estimate 
from the GCM prior. Fundamentally, the network of proxy records 
sample the climate system at different locations and seasons and for 
different spans of time, and climate variable relationships from a cli-
mate model are used to synthesize these diverse records to reconstruct 
a dynamically consistent view of past climate. The reanalysis represents 
a mix of information from the proxies and the GCM, relying more on 
GCM covariances and remote proxies where local proxies are scarce.

RESULTS
Climate reconstructions via data assimilation
The LMR has been extensively validated against instrumental data 
and independent proxy data not used in assimilation (24). Compared 
to instrumental datasets and modern reanalysis products, global- 
mean temperature correlations range from 0.88 to 0.94 and coeffi-
cients of efficiency [(23, 26), here calculated using identical calibration 
and verification periods] range from 0.77 to 0.87 (fig. S1). Spatial skill is 
highest over tropical and mid-latitude oceans, similar to previous 
findings (23). Additional verification in a similar set of experiments, 
including verification against withheld proxies and tests using separate 
calibration and verification periods, can be found in recent work (24).

Annual-mean climate indices in the LMR also compare well with 
observationally based datasets. Three large-scale modes are inspected: 
the Nino 3.4 index (SST variations in the 5°S to 5°N, 170°W to 
120°W region of the Pacific Ocean), the Pacific Decadal Oscillation 
(PDO; calculated as the first principal component of Pacific SST 
anomalies north of 20°N in the LMR), and the AMO (calculated as 
the mean of North Atlantic SSTs detrended over the period 1856 to 
2000 in the LMR). A comparison between the Niño 3.4 index derived 
from the LMR ensemble and from observational data (27) gives a cor-
relation of 0.79 and a coefficient of efficiency of 0.40 over 1873 to 
2000 C.E. For PDO, the LMR matches an observationally based time 
series (28) with a correlation of 0.65. For the AMO, the LMR matches 
the annualized AMO index from the Earth System Research Laboratory 

1Department of Earth Sciences, University of Southern California, Los Angeles, CA, 
USA. 2School of Earth and Sustainability, Northern Arizona University, Flagstaff, 
AZ, USA. 3Department of Atmospheric Sciences, University of Washington, Seattle, 
WA, USA. 4Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA. 
5Department of Earth and Space Sciences, University of Washington, Seattle, 
WA, USA.
*Corresponding author. Email: michael.erb@nau.edu

Copyright © 2020 
The Authors, some 
rights reserved; 
exclusive licensee 
American Association 
for the Advancement 
of Science. No claim to 
original U.S. Government 
Works. Distributed 
under a Creative 
Commons Attribution 
NonCommercial 
License 4.0 (CC BY-NC).

 on D
ecem

ber 17, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Erb et al., Sci. Adv. 2020; 6 : eaay7268     7 August 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 12

(29) with a correlation of 0.65 (fig. S2). This general agreement pro-
vides evidence that the LMR, using data from a network of proxy 
records, skillfully reconstructs large-scale climate indices given 
sufficient proxies.

Drought is quantified using the Palmer Drought Severity Index 
(PDSI), a common hydroclimate metric whose negative values are 
indicative of moisture deficit (30). First, we examine the full range of 
PDSI variations to analyze the effects of large-scale climate patterns 
on U.S. hydroclimate in general. Then, we define a drought threshold 
(here, all years with PDSI below 1 standard deviation compared to the 
nearest 51-year period) to evaluate the conditions that are relevant 
for dry periods alone, for different regions of the United States. For 
the LMR, PDSI is calculated in the model prior using the Penman-
Monteith method for estimating the potential evapotranspiration 
component (31) and then reconstructed in the past through data as-
similation alongside other climate variables (Materials and Methods).

For the purpose of cross-validation, the LMR-derived PDSI is 
compared to two PDSI datasets based on different information sources. 
The first dataset, the North American Drought Atlas (NADA), is a 
summer [June-July-August (JJA)] PDSI reconstruction based on 1845 
tree records (32, 33). A comparison between LMR and NADA shows 
high values of correlation and coefficient of efficiency over most of 
the United States, especially in densely sampled regions (Fig. 2). This 
agreement is remarkable despite the differences in seasonality be-
tween the two datasets (annual-mean values for LMR versus June to 
August for NADA) and the very different methodologies. When aver-

aged regionally, the correlation between LMR and NADA from 1001 
to 2000 C.E. is 0.84 for the U.S. region as a whole (30°N to 49°N, 
130°W to 65°W, land only) and 0.90 for the southwest United States 
[32°N to 40°N, 125°W to 105°W, land only, as in (10)]. The timing of 
PDSI variations compares well between the LMR and NADA data-
sets, especially over the southwest United States (Fig. 2), although 
the LMR displays reduced variability at basically all time scales. This 
reduced variability compared to NADA could result from several 
differences in methodology, including NADA’s use of variance res-
toration, different approach to tree ring detrending, or proxy pre-
whitening. Differences between LMR and NADA over Canada and 
Mexico may be due to the existence of fewer records there; NADA 
generally shows reduced skill in those regions [see figure 6 in (32)]. 
A shortcoming of this comparison, however, is an overlap in proxy 
data sources informing the reconstructions (fig. S3).

To compare LMR to a dataset that does not use proxy data, we also 
validate the LMR-derived PDSI against a PDSI product derived from 
instrumental observations (Dai PDSI) (fig. S4) (30). While the LMR 
uses observational temperature and precipitation data [GISS Surface 
Temperature Analysis (GISTEMP) and Global Precipitation Climatology 
Centre (GPCC), respectively] to derive relationships between proxy 
quantities and modern climate quantities, the LMR methodology has 
no additional knowledge of modern PDSI values, making this an in-
sightful comparison despite only covering 1850 to 2000 C.E. The LMR-
derived PDSI shows good agreement with Dai PDSI, with a correlation 
of 0.65 over the U.S. region and 0.70 for the southwest United States.

Fig. 1. Proxies used in the LMR reanalysis. (A) Proxy locations and (B) the number of proxies through time. Proxies come from PAGES2k v2.0.0, Breitenmoser et al. (62), 
and the National Centers for Environmental Information paleoclimate archives. In total, 2787 proxies are used: 2556 trees, 116 corals and sclerosponges, 105 ice records, 
9 lake sediments, and 1 bivalve.
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The overall agreement between the LMR and these two PDSI 
datasets, which are formulated using two very different approaches, 
lends support to the LMR methodology and increases confidence in 
the multivariate analysis of North American drought. Furthermore, 
while correlations between LMR and Dai PDSI are slightly worse 
than between NADA and Dai PDSI, coefficient of efficiency values 
are better for LMR in the southwest United States, Mexico, and 
Canada. This comparison shows that, despite methodological dif-
ferences, the LMR produces PDSI values in line with other datasets. 
The advantage of LMR is that it provides dynamically consistent 
reconstructions of other climate fields, promoting a more in-depth 
multivariable analysis, which is the focus of the following sections.

Drought versus SST
Understanding the causes of drought variability is critical in water- 
poor regions like nearly all of the United States westward of the 
100th meridian (34). Among forcing mechanisms, drought in the 
western United States is most often related to ENSO, with a La Niña 
pattern of cooler eastern equatorial Pacific SSTs correlated with dri-
er conditions in the southwest (4, 10–12). Heating anomalies asso-
ciated with equatorial SSTs modify Rossby wave propagation from 
the tropics into the extratropics; in particular, cool La Niña SSTs 
reduce tropical convection and upper level divergence, which affects 
the location of quasi-stationary waves (35, 36). Positive pressure anom-
alies over the northern Pacific (i.e., a “blocking” high) divert storm 

Fig. 2. PDSI comparison between LMR and NADA. Coincident (A) correlation and (B) coefficient of efficiency (CE) calculated between annual-mean LMR and JJA NADA 
PDSI at every point for the years of common overlap during 1001 to 2000 C.E. Regional-mean time series of LMR (blue) and NADA (black) for (C) an approximate U.S. region 
(land within 30°N to 49°N, 130°W to 65°W) and (D) the southwest United States (land within 32°N to 40°N, 125°W to 105°W). The box in (B) represents the southwest U.S. 
region used in (D) and analyses throughout the paper. Blue shading in (C) and (D) represents the 95% uncertainty bands for the LMR PDSI. Uncertainty bands widen back 
in time, consistent with proxy attrition. A 10-year running mean has been applied to the time series for plotting clarity [(C) and (D)], but all correlation and coefficient of 
efficiency values are calculated using annual values. Local proxies used in the LMR data assimilation are shown in (A), with count totals representing proxies over the 
entire globe. Hatched areas in (A) are not significant at the 95% level according to an isospectral test (69).
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tracks northward, reducing precipitation in the southwest United 
States. Drought development may also depend on transient eddy ac-
tivity related to the Pacific storm track, as well as land-atmosphere 
feedbacks such as the soil moisture feedback, with models suggest-
ing that preexisting dry soils help exacerbate subsequent drought 
(35, 37). A cold phase of the PDO is also associated with drought in 
the southwest United States and wet conditions in the northwest 
(10), though the PDO may affect drought primarily in conjunction 
with ENSO rather than on its own (18).

To examine these links between drought in the contiguous United 
States and climate features of the surrounding basins, multivariate 
climate patterns are analyzed over the past millennium. It is important 
to note that the causes of drought can vary seasonally, with different 
factors affecting summer versus winter precipitation patterns, but 
here, we take a broader view and focus on annual-mean anomalies. 
Because U.S. drought may be influenced by SSTs in the preceding 
winter, our analysis focuses on connections between annual-mean 
PDSI and climate patterns in the coincident year as well as in the 
previous year. In observational datasets, correlation patterns are simi-
lar when comparing annual-mean PDSI to Nino 3.4 averaged over 
the previous December-January-February (DJF) (which is often used 
as a target for analysis) or over the previous full year, lending sup-
port for this approach (note S1 and fig. S5).

To isolate the patterns that constitute the largest amount of co-
variance between U.S. PDSI and the surrounding climate system, we 
conduct a maximum covariance analysis (MCA; see Materials and 

Methods) (38) between annual-mean PDSI over the United States 
and a joint field consisting of annual-mean SST and 500-hPa heights 
in the surrounding regions (Fig. 3). MCA isolates orthogonal pat-
terns that explain the maximum amount of covariance between the 
fields over the analysis period (here, the last millennium), offering a 
largely impartial assessment of the relationships between chosen fields 
in the multivariate LMR reconstruction.

The first mode of the MCA outlines a clear connection between 
PDSI and tropical Pacific SSTs, with southwest and western-central 
U.S. dry conditions over the last millennium corresponding with La 
Niña and cold PDO SST patterns (Fig. 3). Geopotential heights at 
500-hPa increase primarily over the North Pacific, with a band ex-
tending across the United States and part of the North Atlantic. Over 
the equatorial Pacific, 500-hPa heights are slightly reduced. This 
Pacific response—lower pressure in the tropics and higher pressure 
over the northern Pacific—fits the canonical view of La Niña pro-
ducing a blocking high that diverts Pacific storm tracks to the north. 
In addition, the pattern of height anomalies, with largest increases in 
the North Pacific and stretching across the contiguous United States, 
is consistent with (and opposite to) the decreased heights associated 
with the type of El Niño events that produced the greatest positive 
precipitation anomalies in California between 1948 and 2016 (39). 
The first mode of the MCA is fairly robust when analyzing the indi-
vidual iterations of the LMR (see Materials and Methods).

In the MCA above, the squared covariance fraction quantifies the 
fraction of squared covariance between two fields represented by a 

Fig. 3. MCA. MCA between PDSI and SST/500-hPa heights for mode 1. (A and B) Maps showing the spatial patterns of variability and (C) standardized expansion coeffi-
cients showing how the magnitudes of the spatial patterns change through time. In (B), positive height anomalies are indicated by solid contours and negative anomalies 
are indicated with dashed contours, with the thicker line indicating 0. SSTs and 500-hPa heights are standardized before conducting this analysis, so the values shown are 
not covariances. Calculations are performed on the data in the regions shown. The squared covariance fraction (SCF; measuring the amount of squared covariance for 
which each mode accounts) as well as the fraction of variance (FOV; measuring the relative amount of variability explained by this mode for the variable under consider-
ation) are listed in the lower right of (A) and (B). The correlation (r) of the expansion coefficients is given in (C).
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given mode of variability (40), and the values for fraction of vari-
ance separately quantify the fraction of total variance represented in 
each of these fields. These metrics indicate that the first mode of the 
MCA, discussed above, accounts for 39% of the variance in the U.S. 
PDSI field, 34% of variance in the joint SST/500-hPa height field, 
and 83% of the squared covariance between these two fields.

If the MCA is conducted between PDSI and the previous year’s 
SST and 500-hPa geopotential height anomalies (rather than com-
paring coincident years), then the patterns are similar to those dis-
cussed above (fig. S6). Examining a time-lagged relationship is a good 
target for analysis, as years are reconstructed individually in the LMR 
data assimilation and any relationships between different years stem 
from the proxy records rather than covariances in the model prior. 
The MCA suggests that the primary link between these fields is that 
a La Niña/cool PDO pattern is associated with drought in the southwest 
United States although the correlation of the expansion coefficients 
is reduced in the lagged case.

As a complement to the previous analysis, which analyzes the 
full range of hydroclimate variability over the United States, we now 

explore climate conditions specific to drought states by implement-
ing a drought threshold. “Droughts” are here defined as all years 
where regional PDSI is more than 1 SD below a 51-year moving win-
dow of PDSI, which accounts for any mean state shifts in PDSI values 
and reductions in variance with the loss of proxies further back in 
time. To examine the climate patterns associated with drought in dif-
ferent parts of the United States, we calculate drought years for four 
regions: the northwest, southwest, central, and southeast United States. 
These regions were chosen in other work to represent regions of 
greatest statistical drought independence (10), and the mean SST and 
500-hPa height anomalies during drought years in each of these 
regions are shown in Fig. 4 along with the conditional distributions 
of Nino 3.4, PDO, and AMO values for drought years and non-
drought years.

Mean climate states for drought years for each of the four U.S. 
regions are characterized by La Niña and cool PDO SST patterns, 
although these patterns are weak when considering droughts in the 
northwest U.S. region. Droughts in each region also generally cor-
respond with warmer temperatures in much of the North Atlantic 

Fig. 4. Climate fields associated with regional drought. Maps show mean SST (°C), 500-hPa heights (hPa), and PDSI for drought years relative to all years in four U.S. 
regions: (A) northwest, (B) southwest, (C) central, and (D) southeast United States. The contour interval for 500-hPa heights is 2 hPa, with the thicker line indicating 0. Split 
violin plots show distributions of annual-mean values of Nino 3.4, PDO, and AMO for drought years (brown) versus nondrought years (green) in each region, with lines 
indicating the medians and interquartile range. Differences in means between drought years and nondrought years that are not significant according to a resampling test 
at the 95% level (Materials and Methods) are indicated with an asterisk next to the name of the climate index.
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and increased 500-hPa heights over the North Pacific, continental 
United States, and North Atlantic. Analysis of climate indices shows 
that the Nino 3.4 and PDO indices are significantly lower during 
drought years compared to nondrought years for at least three of the 
four regions using a resampling test (Materials and Methods), and 
AMO is significantly higher in drought years for the central and south-
east regions, but mean AMO is not significantly different for the two 
west coast regions. The analysis of climate indices also reveals a con-
siderable range of values in both drought years and nondrought years, 
with a large degree of overlap between patterns that correspond to 
drought years and those that do not. This indicates that while cer-
tain climate states (i.e., La Niña and cold PDO) are associated with 
drought states on average, these relationships only emerge when ex-
amining mean state differences among considerable amounts of 
climate variability.

Similar results emerge when computing linear regressions be-
tween the full range of PDSI variations and the surrounding climate 
fields (not shown). Correlations between PDSI and equatorial Pa-
cific SSTs are strongest for the southwest United States (exceeding 
−0.6 for SSTs just off the equator, larger than for the Nino 3.4 region 
itself) and weakest for the northwest United States, again indicating 
the differing effects of these teleconnections on different regions of 
the United States. To ensure that these results are not overly deter-
mined by covariances in the model prior—which may affect results for 
coincident years but not the lagged analysis, as mentioned above—
an alternate experimental design is explored in note S2.

We use self-organizing maps (SOMs) to explore connections be-
tween SSTs, 500-hPa heights, and U.S. drought conditions (fig. S7). 
SOMs isolate characteristic patterns in a given climate field and identi-
fy which years are most represented by each pattern (20, 41). Here, 
eight SOM patterns are computed, as in (20) (see Methods in that 
paper for details), from the global SST field over years 1001 to 1925, 
with the post-1925 years removed to eliminate trends in the SOM 
patterns because of anthropogenic warming. In addition, detrended 
500-hPa geopotential height and PDSI anomalies are composited over 
the years corresponding to each SOM pattern, revealing the geopoten-
tial height and PDSI anomalies that correspond to each SST pattern.

The primary SST pattern that emerges through this SOM analy-
sis corresponds to ENSO. In general, drought years in each region 
have a higher occurrence of La Niña–like patterns and a lower 
occurrence of El Niño–like patterns, in agreement with the relation-
ships described above (fig. S7I). This connection appears to be stron-
gest for the southwest U.S. region and weakest for the northwest 
U.S. region. The primary non-ENSO patterns consist of warmer or 
cooler SST anomalies overall, with warmer SSTs connected with drought 
in northern North America and a lack of drought in the southern 
United States, although this connection is relatively weak (fig. S7, D 
and G).

Together, these results indicate that La Niña is a noisy predictor 
of reduced precipitation, but much drought variability appears un-
related to simple ENSO metrics such as Nino 3.4 (fig. S8). Considerable 
variability exists in the analyzed teleconnection patterns, as seen in 
the large overlap in climate index values for drought versus non-
drought years (Fig. 4). Years with drought in the southwest United 
States have below average Nino 3.4 75% of the time, and, when con-
sidering all years, Nino 3.4 only accounts for 13% of the variance in 
southwest U.S. PDSI [i.e., coefficient of determination (R2) = 0.13; 
fig. S8]. Some research has suggested that SST anomalies over longer 
time periods influence longer term drought (10), but only a weak 

correlation emerges for decadal means of the present reanalysis 
(R2 = 0.07 for 1001 to 2000 C.E.).

Even observational datasets [Nino 3.4 (27) and Dai PDSI (30)] 
reveal considerable variability in the relationship between these two 
quantities; for the years 1874 to 2000 C.E., R2 between southwest 
U.S. PDSI and Nino 3.4 is 0.10 when Nino 3.4 is calculated during 
the previous DJF, 0.10 when Nino 3.4 is calculated over the previous 
year, and only 0.03 for coincident annual means (fig. S5). Despite 
this, we primarily analyze coincident years in the reanalysis results 
because they produce a higher correlation on these time scales, po-
tentially a result of the reanalysis methodology. Slightly higher val-
ues can be found for PDSI near the coast of Texas, but the general 
weakness of these relationships suggest that ENSO, measured by 
standard metrics such as Nino 3.4, is a rather minor influence on 
U.S. drought. Stronger connections are revealed when considering 
the northern Pacific and Atlantic basins as a whole, as seen in the 
MCA analysis, but a considerable portion of drought variability still 
appears unrelated to the Nino 3.4 metric alone, possibly suggesting 
the need for a more comprehensive approach when evaluating the 
ocean’s influence on U.S. drought.

Drought response to external forcings
According to a recent modeling study using prescribed SSTs (12), 
SST variations in the global oceans explain 40% of annual-mean pre-
cipitation variance in northern Mexico and the southeastern United 
States but much less in other regions, including the southwest United 
States. The remaining drought variability is a topic of much interest 
(12) and may help explain events such as the reduced precipitation 
in southern California during 2015/2016, which occurred despite a 
strong El Niño. Along these lines, we now consider the extent to which 
some drought variability may be driven by external climate forcings, such 
as greenhouse gases, explosive volcanism, or variations in solar irradi-
ance, which is a question well suited for GCMs. Volcanic eruptions, for 
instance, reduce global-mean precipitation in the Hadley Centre Coupled 
Model version 3 (HadCM3) (42) and Coupled Model Intercomparison 
Project 5 models (43), with the largest modeled precipitation changes 
taking place in the tropics. Volcanism can also generate abrupt cooling, 
followed by a recovery of several years (44).

Because climate models can be run with specified forcings, they 
provide a valuable counterpart to data-driven studies like the LMR. 
Here, we explore the effects of external forcings on past climate in 
the Community Earth System Model (CESM)–Last Millennium En-
semble (LME) simulations (45). The CESM-LME consists of a set of 
transient GCM simulations starting at 850 C.E. and run with chang-
es in one or all of the following: greenhouse gases, volcanic aerosols, 
solar forcing, orbital forcing, and land use change. In addition to 
analyzing an ensemble of nine simulations run with all forcings (here-
after called “All” or “fully forced”), we investigate a variety of single- 
forcing simulations where one forcing varies while all other forcings 
are set to their 850 C.E. values. These simulations focus on the effects 
of changes in greenhouse gases (three ensemble members), land use/
land cover (three members), Earth’s orbit (three members), solar ir-
radiance (four members), and volcanic forcing (five members) [see 
table 1 in (45)]. While orbital forcing, greenhouse gases, and land 
use change have much slower rates of change than the drought vari-
ability of interest, they are included here for completeness and to 
examine whether slow changes in these parameters can affect general 
drought statistics. These simulations present a useful complement 
to the LMR reconstruction because they explore climate variations 
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in the presence or absence of certain forcings, which is impossible 
to fully disentangle in observations alone. In addition, multiple en-
semble members allow us to sample many different expressions of 
internal atmospheric variability, which is important for determin-
ing which variations are endogenous to the atmosphere-ocean sys-
tem and which are exogenous. We examine how different external 
forcings in these simulations affect PDSI in the southwest United 
States. Because this analysis spans the years 850 to 1849 C.E., recent 
anthropogenic changes will not be considered.

The nine fully forced simulations are subjected to identical forc-
ings and differ only in their initial conditions. Because imposed 
forcings always occur with the same timing and magnitude across 
these simulations, externally forced responses should exhibit consist
ent timing across simulations, emerging with averaging, provided 
that the ensemble size is large enough. Variations that are a function 
of unforced atmosphere-ocean variability, on the other hand, includ-
ing variability associated with ENSO or other large-scale telecon-
nections, need not have consistent timing between ensemble members 
and tend to cancel out across ensemble members. Put another way, 
forced responses should emerge as common signals from the other-
wise distinct climate variations in each simulation.

We compute PDSI from modeled climate values in the CESM-LME 
(Materials and Methods). When southwest U.S. PDSI is compared 
across the nine fully forced simulations, considerable differences 
are evident, with the mean signal exhibiting relatively small variations 
(Fig. 5). To quantify similarities between any two simulations, 
we compute correlations for southwest U.S. PDSI between every pair 
of fully forced simulations. These correlations have a mean value of 
0.02, and no two time series agree with a correlation above 0.09. This 
lack of consistency indicates that little southwest U.S. drought vari-
ability may be explained by external forcing. The largest forced signal 
relates to explosive volcanism, which tends to produce wetter con-
ditions in the southwest United States after eruptions. This wetten-
ing is particularly apparent after the Samalas eruption of 1257 C.E., 
which is the largest volcanic forcing in these simulations, when all 
nine ensemble members show positive PDSI regardless of prior condi-
tions (Fig. 5). A more detailed analysis of volcanic responses in 
these simulations has been presented in past work (46). This volca-
nically forced signal, however, only accounts for a small part of the 
overall variability. In other regions of the world, such as northwestern 
South America and northwestern Africa, volcanic eruptions have a 
larger relative impact in these simulations (not shown).

Single-forcing CESM-LME simulations are used to further in-
vestigate whether (and to what extent) particular forcings influence 
southwest U.S. drought. To determine whether much temporal agree-
ment exists between single-forcing experiments and fully forced 
experiments, we calculate correlations between different sets of simula-
tions (fig. S9). Of the single-forcing experiments, volcanic forcing has 
the largest correlation with the fully forced simulations, although the 
median correlation in that case is still only 0.04, suggesting that very 
little of the total variability is explained by these external forcings.

While external forcing appears to have little influence on the 
timing of droughts, it is worth investigating whether imposed forc-
ings affect PDSI characteristics in other ways, such as the length or 
severity of a drought. To prevent long-term trends from overly af-
fecting the estimated variability, we remove a linear trend from each 
southwest U.S. PDSI time series, and droughts are then calculated as 
periods beginning with two consecutive years with PDSI below 1 SD 
relative to the nearest 51-year periods and ending with two consec-

utive years with PDSI above that threshold, similar to the definition 
used by Coats and coauthors (47, 48). Using this definition, the av-
erage frequency, length, and magnitude of droughts are calculated 
over the 1000-year interval for each simulation. This analysis is sim-
ilar to the one performed in other work (16), which showed that a 
considerable portion of drought variability may be unrelated to SSTs. 
Comparison of these drought statistics reveals a high degree of sim-
ilarity across CESM-LME experiments, indicating that the applied 
external forcings do not have a large impact on the longevity or mag-
nitude of droughts in this region (Fig. 6). This is consistent with past 
work, which has shown that external forcings are not required to 
explain the magnitude, spatial, and temporal extent of severe droughts 
such as those seen in the proxy record (i.e., megadroughts), though 
these forcings may be necessary to explain the clustering of these 
droughts during the medieval era (49).

For comparison, statistics of the LMR show southwest U.S. droughts 
that are generally longer and weaker, a characteristic that can be seen 
in the PDSI time series (fig. S10). The statistics of southwest U.S. 
PDSI in NADA, on the other hand, show more intense droughts. These 
differences are difficult to explain, but some of the disparity may stem 
from the aforementioned methodological differences between LMR 
and NADA regarding variance restoration, tree ring detrending, and 
proxy prewhitening.

In general, external forcings appear to have only minor effects on 
southwest U.S. drought in the CESM-LME simulations. Volcanic erup-
tions encourage wetter conditions in the short term, but these forced 
variations make up only a small portion of the total PDSI variability. 
Our focus on the years 850 to 1849 C.E. makes it difficult to com-
ment on the effect of anthropogenic forcing during the industrial peri-
od, but this analysis suggests that natural forcings have only exerted 
a minor influence on southwest U.S. drought in the centuries before 
1850, when greenhouse gases were more constant.

DISCUSSION
The LMR constitutes a powerful methodology for creating a physi-
cally consistent multivariate climate reconstruction from a diverse 
array of proxy records. The proxies provide data about specific re-
gions, climate fields, spans of time, and seasons, and we use proxy 
system models (PSMs) and the covariance structure from a GCM to 
synthesize these diverse perspectives into a cohesive view of past 
climate. While more work is needed, analyses show that the LMR 
climate reconstruction compares well with established datasets for 
temperature, PDSI, and large-scale climate indices, providing evi-
dence of reconstruction skill. In accord with a wide body of published 
work, the LMR reconstruction also finds a clear connection between 
southwest drought and a La Niña SST pattern over the past millen-
nium. This connection emerges as the primary mode of covariability 
between PDSI, SST, and 500-hPa height fields, even though the anal-
ysis methodology (MCA) is not directed to focus specifically on 
the equatorial Pacific. While this pattern is robust, teleconnections to 
SST variations appear to explain only a part of U.S. drought vari-
ability, leaving the larger portion of drought variability unexplained. 
Fundamentally, this data assimilation approach presents data-based 
evidence for the importance of internal atmospheric variability in de-
termining past hydroclimate variability, in agreement with other work 
(15–17, 39, 50).

The present work contains important caveats, however. In par-
ticular, the data assimilation methodology relies on GCM output to 

 on D
ecem

ber 17, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Erb et al., Sci. Adv. 2020; 6 : eaay7268     7 August 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 12

partly quantify relationships between different variables and locations, 
as well as provide a first estimate of past climate. Using a model prior 
like this is necessary, as it provides the framework for synthesizing 
information from diverse proxies—which differ in their climate 
sensitivities, locations, seasonal biases, and temporal coverage—into a 
physically consistent multivariate climate reconstruction. However, 
model bias in spatial climate covariance patterns does affect the re-
constructions. While this work has used alternate analyses (e.g., lagged 
correlations and alternate experimental designs) to minimize the im-
pact of these potential biases in results, future work should explore 
this topic in more depth. The use of model priors from several dif-
ferent GCMs, for instance, may help mitigate the effect of biases in 
any one particular model.

Another area for future improvement is the incorporation of addi-
tional proxies into the data assimilation product, particularly from 

poorly sampled regions and using additional archive types. One data 
assimilation advance, which is being explored in current and past work 
(51), is the incorporation of lower-resolution proxies into the data as-
similation methodology. While proxies that lack annual temporal 
resolution will require additional considerations within the data as-
similation framework, these proxies can provide information about 
sparsely sampled regions (such as continental margins, in the case 
of marine cores) and should more accurately capture low-frequency 
variations compared to tree rings (52, 53), which are heavily repre-
sented in the current data assimilation approach. This could provide 
additional information about slower climate variations and trends, 
refining our understanding of climate variations such as drought and 
potentially making this approach more relevant for studies of past 
megadroughts [e.g., (54)]. Considering the potential for anthropogenic 
changes to worsen future droughts in many regions (7–9), better 

Fig. 5. Southwest U.S. PDSI in CESM-LME. Time series of PDSI averaged over the southwest United States (land within 32°N to 40°N, 125°W to 105°W) in the nine all-
forcing simulations, as well as their mean. Years of the 10 largest volcanic forcings are marked; these vertical lines mark the first year of a large volcanic aerosol forcing, so the 
year listed may not exactly match the year of the actual eruption.
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understanding of the climate dynamics behind drought variations 
is critical for future planning.

If, as we argue, internal atmospheric variability has been a lead-
ing cause of multiyear drought over the Common Era, then this 
bears unfavorably on the prospect for forecasting these droughts. 
This may have been at play in the 2011–2017 California drought, 
which was, by some measures, the most severe Californian drought 
of the past 1200 years (2). Much drought relief was expected from the 
2015/2016 El Niño, which rivaled in magnitude the extreme El Niño 
events of 1982/83 and 1997/98 (55). However, while those previous 
events brought abundant rainfall to California (39), the 2015/2016 
event produced average rainfall throughout most of California 
(39, 55), defying the expected teleconnection pattern in this region 
(39). Consequently, this event failed to end the prolonged drought, 
which had persisted since 2011/12. Southern California had to 
wait until the following year, characterized by mild La Niña condi-
tions, to receive enough rainfall to end the drought (56). Our results 
suggest that this situation may have been a common occurrence 
throughout the past millennium, making current limitations in inter-
annual drought predictability especially important in a warming 
climate with greater evaporative demand for moisture (2, 57).

MATERIALS AND METHODS
Experimental design: Paleoclimate data assimilation
Paleoclimate data assimilation offers a powerful approach for syn-
thesizing a vast array of proxy observations (here, thousands of re-
cords) with the aid of a model’s climate covariance structure. In 
particular, the LMR is a data assimilation approach that uses infor-
mation from proxy records and output from a GCM to estimate cli-
mate variability over the past two millennia. An earlier version of this 
method is described in past work (23), and updates to the methodology 
are described in a recent paper (24). The data assimilation method-
ology is composed of four primary components: (i) GCM output, which 
serves as a “first guess” at the range of possible climate states and 
quantifies covariances within the climate system; (ii) PSMs, which 
relate the model quantities to proxy quantities; (iii) proxy records, 
which provide the temporal information for the reconstruction; and 
(iv) a Kalman filter, which is used to perform the data assimilation.

The methodology works by first randomly selecting a collection 
of annual-mean climate states from the output of an existing GCM 
simulation. Here, we use 100 years from the Community Climate 

System Model 4 (CCSM4) last millennium simulation (58). These 
randomly selected model states (i.e., the prior) are initially identical 
for every year of the assimilation, serving as the first guess of the real 
climate state for any given year. In other words, before any assimi-
lation takes place, the real climate is suspected to be somewhere in 
this range of modeled climate states. The LMR is then run for 20 iter-
ations; within a given iteration, the same prior is used for every year 
of the reconstruction, so the model provides no temporal informa-
tion to the reconstruction. In addition to providing an initial range 
of plausible climate states, the 100-member prior is also used to quan-
tify the covariances within the climate system, which forms the math-
ematical scaffolding that relates climate variations at different locations 
and between different fields.

To perform the data assimilation, proxy and model quantities must 
be compared in the same units, so PSMs are needed. Here, relation-
ships between proxy quantities and climate variables are computed 
by regressing proxy records onto instrumental fields over the period 
1880 to 2015 C.E. For all proxies except tree rings, a linear regres-
sion is computed against temperature [GISTEMP version 4 (59)]. For 
tree rings, a bivariate regression is computed against both temperature 
(GISTEMP) and precipitation [GPCC (60)]. Regarding seasonality, 
proxy records are not assumed to record annual-mean quantities. 
Instead, proxy records are regressed onto climate quantities aver-
aged over the entire year as well as multiple subsets of the year: sum-
mer, winter, and four different two-season half-year periods (as well 
as the season specified in the proxy metadata if different from the 
previously mentioned seasons). The averaging windows that produce 
the best regression between instrumental data and proxy records 
are used in the data assimilation, and this is determined separately 
for each proxy (24). Tree ring width proxies, which are regressed 
onto both temperature and moisture, are allowed to have different 
seasonal sensitivities for temperature and moisture (24). Linear re-
gressions are simpler than a process-based model, but they provide 
good results that can provide a baseline for more complex PSMs in 
the future (24).

The proxy network used in the present work includes records from 
three sources: the PAGES2k v2.0.0 database (61), several thousand 
tree chronologies compiled by Breitenmoser et al. (62), and a selection 
of other proxy records from the National Centers for Environmental 
Information (formerly National Climatic Data Center) paleoclimate 
archives. The proxies are available at Zenodo (63), and the non- 
PAGES2k records are described in a recent data report (64). To be 

Fig. 6. PDSI statistics in different experiments. Statistics of annual-mean PDSI in the southwest United States in different CESM-LME simulations, LMR, and NADA. Bar 
plots show the (A) number of droughts, (B) average drought length, (C) and average drought strength for years 850 to 1849 C.E. Colored bars show the ensemble-mean 
values for each experiment type, with black dash marks showing the values for each ensemble member. The LMR and NADA results are shown in different colors to call 
attention to the different methodologies used. GHG, greenhouse gases; LULC, land use/land cover; Orbit, Earth’s orbit; Solar, solar irradiance; Volc, volcanic forcing.

 on D
ecem

ber 17, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Erb et al., Sci. Adv. 2020; 6 : eaay7268     7 August 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

10 of 12

assimilated, records must be at least annual in resolution and must 
have at least 25 years of overlap with the instrumental records. A total 
of 2787 records are assimilated in the present reanalysis, the spatial 
coverage of which is shown in Fig. 1.

For each year of the reanalysis, the prior is used as a starting point, 
and the climate state is updated through assimilation of annually 
resolved proxy records one by one via a Kalman filter. The Kalman 
filter compares each proxy value against an estimate of the proxy 
value computed from the model prior and then adjusts the climate 
state to produce a better fit for the given year. Because the model 
prior quantifies the climate covariance structure (between locations 
as well as between climate variables), it provides the mathematical 
framework for updating more distant locations as well as a variety 
of climate variables in a uniform framework. In general, climate is 
reconstructed through comparison with both local and remote proxies. 
Locations closest to proxies, as well as variables that are most closely 
related to proxy measurements (23), are expected to be better in-
formed by the proxy network, while other locations and climate fields 
rely more on model covariances. For example, previous research has 
shown that the LMR has higher skill in reconstructing surface tem-
perature than 500-hPa height (23), although the skill of both has been 
improved with recent methodological innovations (24). These qual-
ifications should be kept in mind when interpreting results.

The ability to reconstruct multiple variables has clear benefits and 
facilitates the analysis of climate teleconnections over an extended 
period, with some qualification (note S2). In the LMR, the proxy re-
cords provide temporal information and some spatial information 
(by making use of multiple records in space), while the covariance 
structure of the GCM prior is used to propagate information between 
locations and between climate fields. A localization radius is used 
to ensure that proxies cannot influence the climate farther than 
25,000 km from their location, a value that was chosen to produce 
the expected variance characteristics in the reconstructed temperature 
[see table 1 in (24)]. Further details of this methodology are explained 
in other work (23, 24).

In the present analysis, 20 iterations of the LMR were run. Each 
iteration uses a different random selection of 100 model years for the 
prior and a different random selection of 75% of the proxies for as-
similation. Variety in the priors and assimilated proxies helps sam-
ple uncertainty in the results. All climate fields are output as annual 
quantities averaged from January to December. Exact methodolog-
ical choices are explored in past work (24), and the data have been 
made available as the v2.0 release of the LMR dataset (see “Data and 
materials availability”).

The number of annually resolved proxy records used in the re-
analysis decreases back in time (Fig. 1B), and larger differences 
emerge between the LMR results and the NADA for the first millen-
nium compared to the second, so the analysis in this paper focuses 
on years 1001 to 2000 C.E. The tree proxies used in the LMR and 
the NADA have considerable overlap (fig. S3), although the two ap-
proaches have numerous differences: The methodologies are distinct, 
the LMR uses additional proxy types, and the methods used to re-
move tree ring growth curves are likely different as well, among oth-
er differences. Still, because trees are the most numerous proxy used 
in this study, both over the United States and globally, this overlap 
in data sources should be considered when comparing drought in 
the LMR and the NADA.

Using this multivariate reconstruction of past climate, relation-
ships in the climate system can be explored over an extended period 

of time, with the qualifications mentioned in note S2. Pure modeling 
studies, which are used for exploring possible future drought changes 
(7, 8), are deficient in modeling some aspects of drought variability; 
models may have inadequate low-frequency hydroclimate variabil-
ity (65, 66), although at least one study finds a similar number of long 
droughts in the southwest United States in models as compared to 
NADA (48) and the present analysis finds similar values between 
NADA and the CESM-LME simulations. In addition, because reanal-
ysis uses real proxy data, this method can provide insight on actual 
past droughts.

PDSI calculations
To reconstruct the PDSI over the past two millennia, PDSI values 
are first calculated from quantities in the CCSM4 last millennium 
simulation, which is used as the model prior. This was done using the 
Penman-Monteith equation for potential evapotranspiration and monthly 
climate model output of 2-m air temperature, precipitation, vapor 
pressure, surface pressure, net surface radiation, and surface wind 
(estimated from 10 m down to 2 m using the wind profile power 
law). The computations of PDSI were carried out using the MATLAB 
code from Jacobi et al. (67), which produces the standard formula-
tion of PDSI as opposed to self-calibrating versions [e.g., (68)]. 
Once PDSI is calculated in the model prior, it can be included in the 
LMR data assimilation to calculate proxy-informed PDSI values 
over the past two millennia. The same method was used to calculate 
PDSI in the CESM-LME simulations.

Maximum covariance analysis
To examine how U.S. drought covaries with large-scale patterns of 
the surrounding climate system, an MCA [also called singular value 
decomposition (40)] is used to isolate the mode that explains the 
largest amount of covariance between two fields. Here, one field is 
PDSI over the United States and the second field is a concatenation 
of SSTs and 500-hPa heights over a larger region (see the regions 
displayed in Fig. 3). To ensure that neither the temperature nor the 
500-hPa height anomalies dominate the second term of the MCA, 
all climate anomalies have been standardized by the mean and SD 
over their entire regions, an alternate approach mentioned in past 
work (40). This MCA analysis is conducted on variables on their 
reconstructed 2° latitude-longitude grid, with spatial weighting ap-
plied. To illustrate common patterns in SST/500-hPa height and their 
impact on drought, figures show the homogeneous map of SST/500-hPa 
height and the heterogeneous map of PDSI. Maps are scaled to have 
standardized expansion coefficients before plotting.

Resampling test for significance
The split violin plots in Fig. 4 show the range of annual-mean cli-
mate indices (Nino 3.4, PDO, and AMO) for years when different re-
gions of the United States were experiencing drought or nondrought. 
To see whether the mean of each climate index was significantly dif-
ferent during drought and nondrought years for each of these cases, 
a resampling test was done. In this test, the continuous spans of years 
spent in drought or nondrought were identified for each case, and 
then analogous sets of values were randomly selected from the whole 
time series of the climate index, using sampling with replacement. This 
was repeated 1000 times, and the original drought versus nondrought 
climate index anomaly was compared against the anomalies in these 
1000 randomly sampled cases. Cases in which the original difference 
was outside of the 2.5th or 97.5th percentile were deemed significant.
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SUPPLEMENTARY MATERIALS
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